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Abstract. We present Monte Carlo and series results for the mean valence ( u ) ~  of 
non-percolating clusters on the square lattice and corresponding series results for the simple 
cubic lattice. Mimic functions have been constructed from the series which, for the square 
lattke, agree well with the Monte Carlo data, for a wide range of densities. We have shown 
that if the percolation probability is continuous at p c  then (U)F is continuous at pc, and have 
presented a heuristic argument which indicates that ( u ) ~ ,  the mean valence of a site in a 
percolating cluster, is greater than ( u ) ~ ,  at p c .  This allows us to infer the asymptotic 
behaviour of (U)F in the region of pc. 

Recently, Stauffer (1979) and Essam (1980) have reviewed the theory of percolation 
processes from the viewpoint of the statistics of the percolating and non-percolating 
clusters. Domb has drawn attention to the importance of ramified clusters close to p c  
and, in particular, Domb and coworkers (Domb and Stoll 1977, Stoll and Domb 1979, 
Cherry and Domb 1980) have characterised the degree of compactness or ramification 
of clusters in a percolation process, by a parameter ( A )  defined as the fraction of the 
maximum number of possible cycles which are present in the cluster. Stoll and Domb 
(1979) have used Monte Carlo methods to estimate A for the square lattice at densities 
0.85 s p / p c  s 1.1, where p c  is the critical percolation density. Cherry and Domb (1980) 
have used series methods to estimate the p-dependence of A ,  for all p a p c ,  for the 
infinite cluster on the square, triangular and simple cubic lattices. 

Closely related to the cyclomatic index (and hence A )  is the mean valence of a site in 
a cluster, and we examine here the p-dependence of this quantity, for all p ,  for finite 
clusters on the square and simple cubic lattices. The dependence of the mean valence of 
sites in a finite cluster on p for p > p c  is of interest, since it characterises the behaviour of 
non-percolating clusters in the presence of the percolating cluster. 

We can denote the mean valence of sites in finite clusters as ( u ) ~  and the mean 
valence of sites in all clusters as ( u ) E .  It is easy to derive the p-dependence of ( u ) ~ .  Since 
the sites are occupied uniformly and at random, the expectation of the valence of an 
occupied site belonging to any cluster on the square lattice is given by 

(u)E=4pq3+12p2q2+12p3q+4p4 (1) 
where q = 1 - p .  This immediately gives ( u ) ~  = 4p and, more generally, for a lattice of 
coordination number Q, 

( V ) E =  QP. (2) 
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Denoting the mean valence of sites in an infinite cluster by ( u ) ~ ,  we can relate this to 
( U ) F  and ( u ) ~  through the equation 

P(P)(U)I+(~-P(P))(U)F=(U)E QP (3) 

where P ( p )  is the probability that a randomly chosen occupied site is a member of the 
infinite cluster, i.e. the percolation probability. We note that for p < p c ,  ( v ) ~  = Qp, since 
P( p )  is then zero. As p -+ p c  - , ( u ) ~  -+ Qpc. For p > p c  we can write 

(4) (U )F = (QP -P(P>(v ) I ) / (  1 -p (  P ) )  

and, provided that P ( p )  is continuous, as p - , p c + ,  ( u ) F +  Qpc (since 
Hence ( u ) ~  is continuous at p c .  

is bounded). 

For any p ,  (U)F can be written as 

where C(n,  t, U )  is the number of sites of valence o in an n-cluster with perimeter t. We 
have derived C(n,  t, v )  for n S 16 for the square lattice and for n S 11 for the simple 
cubic lattice. 

Below p c ,  P ( p )  = 0 and, expanding the numerator in ( 5 )  in powers of p ,  we obtain 
( ~ 1 ) ~  = Qp, as expected. This forms a useful check on the coefficients C(n, t, U). At high 
densities ( p  > p c )  one can expand ( U ) F  in powers of q, giving 

(u)F = 4q2+ 12q3 +24q4- 8q5 + 80q6 -472q7+728qs-3584q9+. . . (6) 

for the square lattice, and 

(u)F= 6q4- 6q5 +48q7 - 120qs + 144q9+ 144q'O- 1056ql' + 26O4ql2-3480ql3 

+48q14+ 13 332q1'-37 008qI6+47 O64qI7+22 482q" 

-256 O26ql9+612 O54q2O+. . . (7) 

for the simple cubic lattice. For the square lattice it is known (Sykes and Glen 1976) 
that the coefficient of q14 in the high-density expansion of the mean number of clusters, 
K ( q ) ,  contains contributions from clusters with more, than sixteen sites. Hence the 
coefficients of the expansion of the numerator in ( 5 )  are known only through q13, which 
implies that (6) is known only through q9. Less detailed configurational data are 
available for the simple cubic lattice, the perimeter polynomials are only known up to 
Dll (q)  (Sykes et a1 1976a) and, as a result, the last two terms in (7) are subject to some 
doubt. However, any errors in these coefficients will be small and should have no 
appreciable effect on the extrapolations. 

The expansion in powers of q could also be obtained (Essam, private com- 
munication) by noticing that for p > p c  (U ( P ) ) ~  = Qpp(  p ) / P (  p )  where p (  p )  is the 
probability that a randomly chosen occupied bond is a member of an infinite site cluster. 

We note that by expanding 

we cancompare our data for a,(u) with that of Cherry and Domb (1980), who gave ar (u)  
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up to r = 12 for the square lattice, and up to r = 24 for the simple cubic lattice. Our data 
agree with theirs and, in addition, we find 

U l 3 ( 1 )  = -2204, U13(2) = 630, ~13(3)  = -580, U13(4) -559 (9) 

for the square lattice and, with the proviso discussed above, 

~ 2 5 (  1) = 19 032, U25(2) = 19 104, U25(3 )  = 2856, U25(4) = -8070, 

U25(5) = 7182, ~25(6) = 1705, az6(l) = -48 618, az6(2) = -36 855, 

az6(3) = -12 480, U26(4) = 9798, a26(5) = -13 014, U26(6) = -3161 

(10) 
for the simple cubic lattice. 

In order to characterise ( v ) ~  for 0 c q < qc we have formed Pad6 approximants 
(.Gaunt and Guttmann 1974) to the series (6) and (7). For the square lattice the last few 
approximants are in good agreement with one another for q s 0-3 (for which the spread 
in the last five approximants is at most 1O0/o). Since ( v ) ~  is continuous at p c ,  the high- 
and low-density branches must match and equal 4p, = 2.372. The value of the [3/4] 
approximant at p c  is 2.411, a discrepancy of only I t%.  The p-dependence of ( v ) ~  is 
shown in figure 1 for this lattice. We have carried out a similar analysis for the simple 
cubic lattice, for which the [9/ 101 approximant matches the low-density branch to 
within less than 2%. The mimic function is exhibited in figure 2. 

3O- 

P 

Figure 1. Average valence ( u ( p ) ) ~  of sites in finite clusters on the square lattice. The full 
line is the Pad6 mimic function. Points with error bars are Monte Carlo estimates. 

For the square lattice we have also calculated ( V ) F  using a Monte Carlo procedure 
based on that described by Dean (1963). We have used a variety of finite m x m lattices 
with fixed boundary conditions, ranging from m = 10 to m = 200. The results for the 
m = 200 and m = 20 cases are shown in figure 3. The linearity is readily apparent in this 
data for p S 0 . 5 ,  but there is a rounding effect close to p c  due to the distribution of 
p-values at which percolation first occurs in the sample. The deviation from a gradient 
of 4 for m = 20 is also a finite lattice effect. Some of the Monte Carlo points for m = 200 
are also plotted in figure 1 for comparison with the series results. The agreement is very 
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P 

Figure 2. Mimic function for ( ~ ( p ) ) ~  on the simple cubic lattice. 

0 4  0 8  
P 

Figure 3. Monte Carlo data for the average valence of sites in finite clusters on finite square 
lattices. - 200 x 200, - - - 20 x 20. 

satisfactory, especially for p near to p c  where the series results are less reliable. At 
higher p ,  where the discrepancies are more marked, the Monte Carlo data are not of 
such good quality and the series results are probably to be preferred. 

If we assume that P ( p )  is continuous at pc ,  then we can investigate more closely the 
behaviour of ( v ) F  as p + p c  + by writing (u)I as 
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Since P( p )  + 0 as p + p c  + , and (U)* is bounded, Qp - ( v ) ~  must go to zero at least as 
rapidly as P ( p ) .  We then have two possibilities: (i) Q p - ( t r ) F + O  more rapidly than 
P ( p )  + 0, in which case ( o ) ~  = ( u ) ~  at pc ,  or (ii) Qp - ( ~ 1 ) ~ ’  0 at the same rate as P ( p )  + 0. 
Inthiscase,writingP(p)-B(p-p,)’wehave Qp, - (~)F-B’(~-p~)’ ’ forp  =p;,with 
p’ = p. That is, the exponent characterising the behaviour close to the critical density is 
the same for the two functions, and ( U ) ~ = ( U ) F + B ’ / B  at p c .  For the square lattice 
(u(Pc))F=4Pc=2’372f0’008 (Sykes et a1 1976b) and recent Monte Carlo data 
(Middlemiss et a1 1980) suggest ( ~ ( p , ) ) ~  = 2.52Jt0.01. This result comes from an 
extrapolation from finite lattice data, but the extrapolation appears to be quite smooth 
and a value as low as 2.372 seems to be completely inconsistent with the Monte Carlo 
results. This leads to the view that, for the square lattice, ( o ) ~ -  Q p c - B ’ ( p  -pC)’,  as 
p + pc  + , with p = f (Sykes et a1 1976c) and B’ = 0.23 Jt 0.03, where we have used the 
value B = 1.530Jt0.015 (Sykes et a1 1976~) .  An alternative proof that p ’ =  p can be 
constructed by using the relationship between ( o ) ~  and P ( p )  (see above) and extending 
to the site problem the inequalities between P ( p )  and p ( p )  derived by Blease et a1 
(1978). We note that if P ( p )  has a discontinuity at p c  then (11) gives no information 
about p’ ,  but the inequality ( v ( p c f ) ) ~  # ( v ( p , + ) ) ~  would then imply that ( V ) F  is 
discontinuous. 

The way in which the average valence of a site depends on the size of the cluster 
containing it is also of interest, and we define (u (n ,  p ) )  as the average valence of a site in 
a cluster of n sites at density p .  We have calculated this quantity at p = pc,  for small n, 
from Monte Carlo data. The n-dependence is shown in figure 4 for a finite (100 x 100) 
lattice. Not surprisingly, ( v ( n ,  p , ) )  appears to be a monotone non-decreasing function 
of n, approaching the limit for the percolating cluster found by Middlemiss et a1 (1980). 
This limiting value is shown as a dashed line in the figure. In order to obtain ( ~ ( p , ) ) ~  
from these results, one needs the distribution of cluster sizes p(n, p , ) .  This quantity is 
known (e.g. Hoshen et a1 1979) to be a rapidly decreasing function of n, and our data, 
for the 100 x 100 finite lattice, are also shown in figure 4. The mean valence over all 
clusters is given by 

I I I I I 

~. . . . . . . - . . . . . . . . . . - . . . . . . . . . . - - - . . . - - . . _ _  

2 0  L \ 
h - 

1 0  i 1 
n 

Figure 4. Average valence of sites in clusters of n sites (full line) and cluster size distribution 
function (broken line) in arbitrary units. 
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Writing (u(n, p , ) )  = [limn+co (v(n, p,))]-g(n)= t-g(n), we have 
rOD 

since If p (n, p,) dn = 1, and this will be strictly less than t provided only that the integral 
is positive. This is the case since g and p are both non-negative everywhere and 
positive, at least for sufficiently small n. This argument supports the result that 
(u(P,))F< (v(P,))I and hence that Qp - ( v ) ~ - P ( p )  for p = p c + .  

Finally, we return to explore the relationship of our results to those of Cherry and 
Domb (1980). For the infinite cluster on the square lattice, at anyp > p c ,  the coefficient 
of compactness ( A )  is related to the mean valence through the equation 

A ( p )  = b ( v ( ~ ) ) ~ -  1 (14) 

A ( p )  =b(u(P))Ff[4p-(u(p))F1/2P(p)- 1. (15) 

(see e.g. Middlemiss et a1 1980, equation (3)). From (3) and (14) we obtain 

Using the Pad6 mimic function for (u(p))F and an appropriately derived mimic 
function for P ( p ) ,  we have calculated A ( p )  for p > p c ,  using equation (15). The results 
are in good agreement with those of Cherry and Domb (1980) except in a small region 
close to p,. The mimic functions which we have used for ( ~ ( p ) ) ~  do not quite go to Qp, 
as p + p c  + , and this small error is magnified close to p c  since P( p) + 0. Consequently 
our estimate of A (p), from the mimic functions, will be unsatisfactory close to p , .  One 
might hope to use the asymptotic form ( v ( p ) ) F -  Q p c - B ' ( p  - p , ) @  in conjunction with 
equation (15) to predict the behaviour of A (p) in the asymptotic region. This requires a 
knowledge of the way in which (Qp - ( u ) ~ ) / P (  p) approaches B' /B  as p + p c  + , which is 
determined by the form of the subdominant (but confluent) singularities in the 
numerator and denominator. Consequently, no detailed predictions can be made about 
the behaviour of A (p) in the asymptotic region. However, equation (15) suggests that 
A (p)  will exhibit power law behaviour, 

A ( p )  - A ( PJ - ~ ( p  - pCle  (16) 
and 8 will be determined by the most singular term in the right-hand side of equation 
(15). Hence 8 s @. Since p is known to be about $for the square lattice, this implies that 
A (p) apprcaches A (p,) with infinite slope. This is not apparent from the data of Cherry 
and Domb (198c)), but this may only imply that the asymptotic region is very narrow. 
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